
fomod Documentation
Release 5.x

Daniel Nunes and the fomod team

Dec 08, 2017





Contents

1 Contents 3

i



ii



fomod Documentation, Release 5.x

fomod is game-agnostic format for mod installers, written in xml.

This documentation contains both the tutorial, for beginners, with the most widely used options, and a collection of
conventions to make some specifics clearer for both fomod authors and installer authors.

This documentation was written for the 5.x major releases.

Contents 1



fomod Documentation, Release 5.x

2 Contents



CHAPTER 1

Contents

1.1 A fomod Tutorial

At the end of each section there will be a link to an example package where you can see all that was discussed so far.

Let’s jump right in - we have finished our mod and we need to provide an installer.

1.1.1 A Simple Installer

We’ll start with a simple example, here’s how our package looks:

.
- example.plugin
- readme.txt

Don’t forget that the . (dot) simbolizes our current directory.

So we need to install our example.plugin to wherever plugins are installed for this game. We don’t really care where
exactly that is, we’ll leave that to the actual installer to figure out. From now on, let’s call this destination folder, dest.

We start by creating a folder named fomod and then creating two files under it named info.xml and ModuleCon-
fig.xml. Your package should now look like:

.
- fomod
| - info.xml
| - ModuleConfig.xml
- example.plugin
- readme.txt

Start with info.xml. You could type this in and be done with it:

<fomod/>

3



fomod Documentation, Release 5.x

... but that’s not really helpful, is it? The purpose of the info.xml file is to provide extra metadata for your package, so
other people and apps understand what it is about. So let’s fill it in properly:

<fomod>
<Name>Example Mod</Name>

<Author>Example Author</Author>

<Version MachineVersion="1.2.3">
1.2.3

</Version>

<Description>
This is an example mod.

</Description>

<Website>
https://example.website.com/example-mod

</Website>
</fomod>

See? It didn’t hurt and now everyone else knows a little more about our mod! It should be pretty much self-explanatory
but if you need a reminder on xml feel free to pause here and look at W3Schools.

Moving on! The ModuleConfig.xml is where the magic happens. Coincidentally, it’s also the more complex and
mind-numbing of the two. So we’ll start slow and build our way through all the options. At least the more useful ones.

<config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://qconsulting.ca/fo3/ModConfig5.0.xsd">

<moduleName>Example Mod</moduleName>

<requiredInstallFiles>
<file source="example.plugin"/>

</requiredInstallFiles>

</config>

Ok, bit of a mouthful. The config tag has the url of the schema as an attribute and it serves as the root of the entire
tree. moduleName should be pretty much self-explanatory, no?

Now, requiredInstallFiles. This tag serves as a root to any files and folders that are ALWAYS installed with your mod.
Simple enough. That’s all we want for now. The file tag under it specifies what to install. The attribute source says
where the source file will be found. If you needed to install a folder, instead of listing all files in that folder you could
use the folder tag, it has exactly the same attributes as file.

And that’s it. We’ve just made a tiny installer that will successfully install example.plugin for our users.

Example 01

1.1.2 Dependencies Network

Right, our installer is a little too simple. Let’s say you added a few more things to your plugin, that depended on
another plugin. Why waste time reiventing the wheel?

So now you need to make sure the other mod is installed before your own or it won’t work. Let’s say our plugin
depends on depend1.plugin:

4 Chapter 1. Contents

http://www.w3schools.com/xml/
https://github.com/GandaG/fomod-docs/tree/master/examples/01


fomod Documentation, Release 5.x

<config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://qconsulting.ca/fo3/ModConfig5.0.xsd">

<moduleName>Example Mod</moduleName>

<moduleDependencies operator="And">
<fileDependency file="depend1.plugin" state="Active"/>

</moduleDependencies>

<requiredInstallFiles>
<file source="example.plugin"/>

</requiredInstallFiles>

</config>

(Pay attention to the order of the tags! It’s important!)

moduleDependencies lists all the dependencies our mod needs fulfilled. It is the first thing the actual installer will
check, even before installing the files in requiredInstallFiles. This dependency list is actually a shared format (meaning
other tags will follow the same rules, even if their tag is different), so we’ll refer back here whenever another shows
up.

The operator attribute shows how the dependencies will be resolved:

• “And”, every single dependency needs to be met

• “Or”, at least one dependency needs to be met

fileDependency, much like the file tag, specifies a file, which in this case needs to exist in the dest folder. The file
attribute is, unsurprisingly, the file to depend on, and state is which state the file can be in (“Active”, “Inactive” and
“Missing”).

And that’s it, you now successfully depen... Awww shucks. You forgot another dependency!

You also depend on another mod, but here the author was a bit messy. He changed the name of the installed file when
he updated the version! You should never, ever, do this, but not everyone is as amazing, beautiful and articulate as we
are.

So now you depend on another two files, depend2v1.plugin and depend2v2.plugin. But your mod works with both,
so you don’t really care which the user has installed and you can’t put both under the “And” operator since the user
will only have one of them installed. Now we enter the domain of nested dependencies:

<config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://qconsulting.ca/fo3/ModConfig5.0.xsd">

<moduleName>Example Mod</moduleName>

<moduleDependencies operator="And">
<fileDependency file="depend1.plugin" state="Active"/>
<dependencies operator="Or">

<fileDependency file="depend2v1.plugin" state="Active"/>
<fileDependency file="depend2v2.plugin" state="Active"/>

</dependencies>
</moduleDependencies>

<requiredInstallFiles>
<file source="example.plugin"/>

</requiredInstallFiles>

</config>

1.1. A fomod Tutorial 5



fomod Documentation, Release 5.x

The dependencies tag works exactly like moduleDependencies (remember what I said before?). It has the same at-
tribute (operator, and it works the same way), the same possible children. You can even have another dependencies
within it!

So how does it all resolve? Let’s start from the top:

• moduleDependencies‘s operator is “And” so we need to meet all dependencies;

• First, the dependency on depend1.plugin is always mandatory;

• Second, the nested dependencies has to be met too, so we go down:

– This operator is “Or” so at least on of these files has to exist;

– If either depend2v1.plugin or depend2v2.plugin exist, this is met.

• And we go back up and check if if they’re all met. If they are, installation moves on and if not, installation stops
here and the actual installer complains!

To finish off this section, there might be another useful tag to use with moduleDependencies: gameDependency. It’s
used like this:

<moduleDependencies>
<gameDependency version="1.0"/>

</moduleDependencies>

It pretty much just specifies a minimum version of the game that the mod needs to be able to run.

And finally, you now successfully depend on two other mods to install!

Example 02

1.1.3 A Step Forward

And we finally get to the most important part of the installer - the installation steps.

You’ve worked a bit more on your mod and now you offer users a choice between two features:

.
- fomod
| - info.xml
| - ModuleConfig.xml
| - option_a.png
| - option_b.png
- example_a.plugin
- example_b.plugin
- readme.txt

So now let’s go step-by-step in understanding how to present this to the user:

<config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://qconsulting.ca/fo3/ModConfig5.0.xsd">

<moduleName>Example Mod</moduleName>

<moduleDependencies operator="And">
<fileDependency file="depend1.plugin" state="Active"/>
<dependencies operator="Or">

<fileDependency file="depend2v1.plugin" state="Active"/>
<fileDependency file="depend2v2.plugin" state="Active"/>

</dependencies>

6 Chapter 1. Contents

https://github.com/GandaG/fomod-docs/tree/master/examples/02


fomod Documentation, Release 5.x

</moduleDependencies>

<installSteps order="Explicit">
<installStep name="Choose Option">

<optionalFileGroups order="Explicit">
<group name="Select an option:" type="SelectExactlyOne">

<plugins order="Explicit">

<plugin name="Option A">
<description>Select this to install Option A!</

→˓description>
<image path="fomod/option_a.png"/>
<files>

<file source="example_a.plugin"/>
</files>
<typeDescriptor>

<type name="Recommended"/>
</typeDescriptor>

</plugin>

<plugin name="Option B">
<description>Select this to install Option B!</

→˓description>
<image path="fomod/option_b.png"/>
<files>

<file source="example_b.plugin"/>
</files>
<typeDescriptor>

<type name="Optional"/>
</typeDescriptor>

</plugin>

</plugins>
</group>

</optionalFileGroups>
</installStep>

</installSteps>

</config>

Don’t panic. First, requiredInstallFiles was removed since we no longer need it.

installSteps is the root tag for this portion. All it does is contain the individual steps and set the order they appear in
via the order attribute. Like with the optionalFileGroups and plugins tags, you’ll want to keep this value to “Explicit”.
For more info on this take a look at the Tips and Tricks.

Next, installStep. The step itself and for now all it does is name the step (name attribute) and hold the next tag.

optionalFileGroups, has the same order attribute as installSteps and does nothing more than holding groups.

group is an interesting tag - all options, or plugins, below here will be grouped and all groups in the same step will
be visible at once. This allows the user to make several choices in the same step and is incredibly useful for you (less
work) as long as these choices don’t require interaction between them (which we’ll get to in the next section!).

So the group tag holds the plugins and you get to define the name of the group (name attribute) and its type. I won’t
waste time explaining them since they’re so simple and self-explanatory: “SelectAny”, “SelectAll”, “SelectExactly-
One”, “SelectAtMostOne” and “SelectAtLeastOne”.

Unlike the previous tag, plugins is boring. Same deal as optionalFileGroups but with plugins.

1.1. A fomod Tutorial 7



fomod Documentation, Release 5.x

plugin is where all the magic happens. This corresponds to an option the user can take during installation. The name
attribute is what the option will be called and description the... description. While it is not required to set an image for
this option it is highly recommended.

In files you set the files you want to install if this option is selected, exactly the same way as requiredInstallFiles.
Lastly, typeDescriptor is a bit complex but for what we want and need most of the time what you see in the example
is enough. In the name attribute in type you have a choice between:

• “Optional”, where the option is... optional. Yep.

• “Required”, where the user doesn’t really have a choice. Useful for including small readmes during the instal-
lation and hoping the user reads them this way.

• “Recommended”, where the option is usually pre-selected. Be careful as implementation of this varies.

There are actually two more possible but they’re useless.

To finish this section here’s a little piece of advice - try to keep your files the same name regardless of version and user
options. Other’s tools may be depending on it and it’s considered general courtesy to do so. So our example’s package
and installSteps should look like this instead:

.
- fomod
| - info.xml
| - ModuleConfig.xml
| - option_a.png
| - option_b.png
- option_a
| - example.plugin
- option_b
| - example.plugin
- readme.txt

<installSteps order="Explicit">
<installStep name="Choose Option">

<optionalFileGroups order="Explicit">
<group name="Select an option:" type="SelectExactlyOne">

<plugins order="Explicit">
<plugin name="Option A">

<description>Select this to install Option A!</description>
<image path="fomod/option_a.png"/>
<files>

<folder source="option_a"/>
</files>
<typeDescriptor>

<type name="Recommended"/>
</typeDescriptor>

</plugin>
<plugin name="Option B">

<description>Select this to install Option B!</description>
<image path="fomod/option_b.png"/>
<files>

<folder source="option_b"/>
</files>
<typeDescriptor>

<type name="Optional"/>
</typeDescriptor>

</plugin>
</plugins>

</group>

8 Chapter 1. Contents



fomod Documentation, Release 5.x

</optionalFileGroups>
</installStep>

</installSteps>

Example 03

1.1.4 Flags and You

Your mod’s new version now features a choice between textures: Blue or Red. But you needed to make a version of
each texture for each plugin version:

.
- fomod
| - info.xml
| - ModuleConfig.xml
| - option_a.png
| - option_b.png
| - texture_blue.png
| - texture_red.png
- plugin_a
| - example.plugin
- plugin_b
| - example.plugin
- texture_blue_a
| - texture.tga
- texture_blue_b
| - texture.tga
- texture_red_a
| - texture.tga
- texture_red_b

- texture.tga

Ugh, it’s getting complex. Let’s see what we can make of our steps:

<config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://qconsulting.ca/fo3/ModConfig5.0.xsd">

<moduleName>Example Mod</moduleName>

<moduleDependencies operator="And">
<fileDependency file="depend1.plugin" state="Active"/>
<dependencies operator="Or">

<fileDependency file="depend2v1.plugin" state="Active"/>
<fileDependency file="depend2v2.plugin" state="Active"/>

</dependencies>
</moduleDependencies>

<installSteps order="Explicit">

<installStep name="Choose Option">
<optionalFileGroups order="Explicit">

<group name="Select an option:" type="SelectExactlyOne">
<plugins order="Explicit">

<plugin name="Option A">
<description>Select this to install Option A!</

→˓description>

1.1. A fomod Tutorial 9

https://github.com/GandaG/fomod-docs/tree/master/examples/03


fomod Documentation, Release 5.x

<image path="fomod/option_a.png"/>
<files>

<folder source="option_a"/>
</files>
<conditionFlags>

<flag name="option_a">selected</flag>
</conditionFlags>
<typeDescriptor>

<type name="Recommended"/>
</typeDescriptor>

</plugin>

<plugin name="Option B">
<description>Select this to install Option B!</

→˓description>
<image path="fomod/option_b.png"/>
<files>

<folder source="option_b"/>
</files>
<conditionFlags>

<flag name="option_b">selected</flag>
</conditionFlags>
<typeDescriptor>

<type name="Optional"/>
</typeDescriptor>

</plugin>

</plugins>
</group>

</optionalFileGroups>
</installStep>

<installStep name="Choose Texture">
<visible>

<flagDependency flag="option_a" value="selected"/>
</visible>
<optionalFileGroups order="Explicit">

<group name="Select a texture:" type="SelectExactlyOne">
<plugins order="Explicit">

<plugin name="Texture Blue">
<description>Select this to install Texture Blue!</

→˓description>
<image path="fomod/texture_blue.png"/>
<files>

<folder source="texture_blue_a"/>
</files>
<typeDescriptor>

<type name="Optional"/>
</typeDescriptor>

</plugin>

<plugin name="Texture Red">
<description>Select this to install Texture Red!</

→˓description>
<image path="fomod/texture_red.png"/>
<files>

<folder source="texture_red_a"/>

10 Chapter 1. Contents



fomod Documentation, Release 5.x

</files>
<typeDescriptor>

<type name="Optional"/>
</typeDescriptor>

</plugin>

</plugins>
</group>

</optionalFileGroups>
</installStep>

<installStep name="Choose Texture">
<visible>

<flagDependency flag="option_b" value="selected"/>
</visible>
<optionalFileGroups order="Explicit">

<group name="Select a texture:" type="SelectExactlyOne">
<plugins order="Explicit">

<plugin name="Texture Blue">
<description>Select this to install Texture Blue!</

→˓description>
<image path="fomod/texture_blue.png"/>
<files>

<folder source="texture_blue_b"/>
</files>
<typeDescriptor>

<type name="Optional"/>
</typeDescriptor>

</plugin>

<plugin name="Texture Red">
<description>Select this to install Texture Red!</

→˓description>
<image path="fomod/texture_red.png"/>
<files>

<folder source="texture_red_b"/>
</files>
<typeDescriptor>

<type name="Optional"/>
</typeDescriptor>

</plugin>

</plugins>
</group>

</optionalFileGroups>
</installStep>

</installSteps>

</config>

The most obvious change was the addition of two new steps, but we’ll get there later.

First let’s talk about the existing step. A couple of new tags were added: conditionFlags and flag. conditionFlags
works much like files but for flags - sets the flag to the value you want whenever the option is selected.

Within plugin at least one of either conditionFlags or plugin must exist in any order.

1.1. A fomod Tutorial 11



fomod Documentation, Release 5.x

A flag is like a marker with a name and a value that you control. It does nothing by itself but is amazing at communi-
cating things throughout the installer - here we use it to tell the other two steps what was the option the user chose. To
resume, set the flag name with the name attribute and its value with the element’s text.

And on to the two last steps. The new tag here is visible, which is a dependency network. This tag manages whether
the step is visible or not - if its conditions are met then the step is shown to the user, otherwise it’s skipped.

In the first of these two steps we’re installing the textures that correspond with option A in the first step so we make
sure to depend on the flag we set on option A for visiblity. In the last one we do the opposite!

That’s it really, most of you can now go on making installers for your mods. As you can see, fomod is actually pretty
simple! And for the brave ones or those who need a little more to spice up their installer I’ll be waiting for you at the
next section!

Example 04

1.1.5 The Installation Matrix

So you’ve finished reading the last section and maybe you thought - “so if for each choice dependent on a previous
one I have to make a new install step, what if I had 10 choices for the user? 20?” - and you thought very well. In
truth, if you followed the previous and you had the user make 10 dependent choices between two options you’d need
to make 1023 (𝑎𝑛 = −1 + 2𝑛, where 𝑛 is the number of choices for the user to make) installation steps.

Instead, you could create an installation matrix:

<config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://qconsulting.ca/fo3/ModConfig5.0.xsd">

<moduleName>Example Mod</moduleName>

<moduleDependencies operator="And">
<fileDependency file="depend1.plugin" state="Active"/>
<dependencies operator="Or">

<fileDependency file="depend2v1.plugin" state="Active"/>
<fileDependency file="depend2v2.plugin" state="Active"/>

</dependencies>
</moduleDependencies>

<installSteps order="Explicit">
<installStep name="Choose Option">

<optionalFileGroups order="Explicit">

<group name="Select an option:" type="SelectExactlyOne">
<plugins order="Explicit">

<plugin name="Option A">
<description>Select this to install Option A!</

→˓description>
<image path="fomod/option_a.png"/>
<conditionFlags>

<flag name="option_a">selected</flag>
</conditionFlags>
<typeDescriptor>

<type name="Recommended"/>
</typeDescriptor>

</plugin>

<plugin name="Option B">

12 Chapter 1. Contents

https://github.com/GandaG/fomod-docs/tree/master/examples/04


fomod Documentation, Release 5.x

<description>Select this to install Option B!</
→˓description>

<image path="fomod/option_b.png"/>
<conditionFlags>

<flag name="option_b">selected</flag>
</conditionFlags>
<typeDescriptor>

<type name="Optional"/>
</typeDescriptor>

</plugin>

</plugins>
</group>

<group name="Select a texture:" type="SelectExactlyOne">
<plugins order="Explicit">

<plugin name="Texture Blue">
<description>Select this to install Texture Blue!</

→˓description>
<image path="fomod/texture_blue.png"/>
<conditionFlags>

<flag name="texture_blue">selected</flag>
</conditionFlags>
<typeDescriptor>

<type name="Optional"/>
</typeDescriptor>

</plugin>

<plugin name="Texture Red">
<description>Select this to install Texture Red!</

→˓description>
<image path="fomod/texture_red.png"/>
<conditionFlags>

<flag name="texture_red">selected</flag>
</conditionFlags>
<typeDescriptor>

<type name="Optional"/>
</typeDescriptor>

</plugin>

</plugins>
</group>

</optionalFileGroups>
</installStep>

</installSteps>

<conditionalFileInstalls>
<patterns>

<pattern>
<dependencies operator="And">

<flagDependency flag="option_a" value="selected"/>
<flagDependency flag="texture_blue" value="selected"/>

</dependencies>
<files>

<folder source="option_a"/>
<folder source="texture_blue_a"/>

1.1. A fomod Tutorial 13



fomod Documentation, Release 5.x

</files>
</pattern>
<pattern>

<dependencies operator="And">
<flagDependency flag="option_a" value="selected"/>
<flagDependency flag="texture_red" value="selected"/>

</dependencies>
<files>

<folder source="option_a"/>
<folder source="texture_red_a"/>

</files>
</pattern>
<pattern>

<dependencies operator="And">
<flagDependency flag="option_b" value="selected"/>
<flagDependency flag="texture_blue" value="selected"/>

</dependencies>
<files>

<folder source="option_b"/>
<folder source="texture_blue_b"/>

</files>
</pattern>
<pattern>

<dependencies operator="And">
<flagDependency flag="option_b" value="selected"/>
<flagDependency flag="texture_red" value="selected"/>

</dependencies>
<files>

<folder source="option_b"/>
<folder source="texture_red_b"/>

</files>
</pattern>

</patterns>
</conditionalFileInstalls>

</config>

Granted, the number of matrix items (pattern tags) you’ll need to create in this specific 2 options/choice example is
always going to be higher (𝑎𝑛 = 2𝑛, where 𝑛 is the number of choices for the user to make) than the number of
installation steps needed for the same number of choices, BUT you can better organize your steps into groups since
they’re no longer dependent on each other and this matrix is mostly copy-paste while replacing a few things, while the
steps need careful adjustements of the visible, files and conditionFlags tags.

It also looks much better this way.

As you may have understood by now, conditionalFileInstalls allows you to create a matrix of pattern tags. The mod
manager/installer will run through each of these, check dependencies and if they match, install anything under files.
We’ve talked about these tags before, they work exactly the same way.

And that’s it really. All major sections were talked about and you’re ready to tackle 99.9% of the fomod installers out
there. There are a few minor things that also exist but they’re so rarely needed that they can be safely ignored by most
people. To take a look at some of them continue on to Tips and Tricks and if you need something else that isn’t even
covered there head on over to Specification for a complete and exhaustive look at the schema.

Hope you learned something and good luck!

Example 05

14 Chapter 1. Contents

https://github.com/GandaG/fomod-docs/tree/master/examples/05


fomod Documentation, Release 5.x

1.2 Tips and Tricks

AKA a F.A.Q. for which we couldn’t come up with questions

1.2.1 The Schema Location

Maybe you’ve noticed this appearing as the schema location in the examples:
http://qconsulting.ca/fo3/ModConfig5.0.xsd. It is not an accident - some mod managers, and I won’t name
names here, use the link text (not the file the link points to, but the link itself) to check which fomod version the
installer is using.

Conclusion - you can’t change it unless you’re sure your users will never use those mod managers. Hopefully they’ll
drop that if a new schema version is created.

1.2.2 The Explicit Order

As promised during the tutorial - the fabled order attribute.

This is actually pretty simple and, if I might say so, completely ridiculous. Let me show you the options for this
attribute:

• “Ascending” - the default

• “Descending”

• “Explicit”

The first two sort your stuff alphabetically with no regards to how you sorted them out and since (the order attribute is
optional, meaning you can omit it) the default is “Ascending” you’ll need to put order=”Explicit” everywhere in your
installer.

No idea why it was decided to put “Ascending” as the default or who even thought it would be a good idea to sort
things alphabetically here.

1.2.3 The Type Descriptor

Coming soon!

1.3 Specification

The fomod format initially arose from the need to provide users with a simpler way of installing mods without the
need to download multiple files.

It was created and initially maintaned by a currently unknown developer.

The fomod files (discussed below) can be thought of as a blueprint for a mod manager or an independent mod installer
to create a GUI (graphical user interface) to simplify user installation.

1.3.1 Structure

A fomod installers requires a specific package structure. Assuming the current directory (.) is the package:

1.2. Tips and Tricks 15



fomod Documentation, Release 5.x

.
- example.plugin
- readme.txt

A fomod folder is needed and within it two files that are going to be described below: Info and Config.

A final structure should resemble:

.
- fomod
| - info.xml
| - ModuleConfig.xml
- example.plugin
- readme.txt

1.3.2 Info File

There is no defined schema for this file but it is required anyway. A proposed schema to fit the majority of mod
managers could be:

<?xml version="1.0" encoding="utf-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" version="5.x">

<xs:element name="fomod">
<xs:annotation>

<xs:documentation>
The following tags are to be filled in according
to their tags, shouldn't be hard to figure out.

</xs:documentation>
</xs:annotation>
<xs:complexType>

<xs:sequence>
<xs:element name="Name" type="xs:string" minOccurs="0"/>
<xs:element name="Author" type="xs:string" minOccurs="0"/>
<xs:element name="Version" minOccurs="0">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="MachineVersion" type="xs:string"/>

<xs:annotation>
<xs:documentation>

This attribute is used for providing a
machine-readable version.
Examples can be found here - https://en.

→˓wikipedia.org/wiki/Software_versioning

Semantic versioning is recommended -
→˓https://semver.org/

</xs:documentation>
</xs:annotation>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="Description" type="xs:string" minOccurs="0"/>
<xs:element name="Website" type="xs:string" minOccurs="0"/>
<xs:element name="Id" type="xs:string" minOccurs="0"/>
<xs:any processContents="skip" minOccurs="0" maxOccurs="unbounded">

16 Chapter 1. Contents



fomod Documentation, Release 5.x

<xs:annotation>
<xs:documentation>

This element is used solely for allowing extensions
since this is merely a proposed schema.

</xs:documentation>
</xs:annotation>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

1.3.3 Config File

You can find a complete reference for this file here. However, since it is generally easier to understand, it is recom-
mended that you look through the actual schema.

1.3. Specification 17

_static/ModuleConfig.html
https://github.com/GandaG/fomod-schema/blob/5.1/ModuleConfig.xsd

	Contents

